Linear Algebra [KOMS120301] - 2023/2024

14.1 - Inner Product Space and Orthogonality

Dewi Sintiari

Computer Science Study Program Universitas Pendidikan Ganesha

Week 15 (December 2023)

1 / 25 © Dewi Sintiari/CS Undiksha

ロ ト 4 同 ト 4 三 ト 4 三 ト 9 Q (や)

Learning objectives

After this lecture, you should be able to:

- 1. explain the concept of inner product in general (especially, in terms of 4 axioms of inner product);
- 2. explain the concept of inner product space;
- 3. compute the inner product of two vectors in a space;
- 4. compute the weighted inner product of two vectors;
- 5. compute the angle of two vectors in terms of inner product;
- 6. compute the distance of two vectors;
- 7. show that two vectors are orthogonal or not.

Part 1: Inner product & inner product space

3 / 25 © Dewi Sintiari/CS Undiksha

Inner product

An inner product on a real vector space^{*} V is a function that associates real numbers u, v with each pair of vectors in V in such a way that the following axioms are satisfied for all vectors u, v, and w in V and all scalars k.

1. $\langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle$ [Symmetric axiom]2. $\langle \mathbf{u} + \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle$ [Additivity axiom]3. $\langle k \mathbf{u}, \mathbf{v} \rangle = k \langle \mathbf{u}, \mathbf{w} \rangle$ [Homogenity axiom]4. $\langle \mathbf{v}, \mathbf{v} \rangle \ge 0$ and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$ [Positivity axiom]

A real vector space with an inner product is called a real inner product space.

Euclidean inner product

The inner product of two vectors **u** and **v** in \mathbb{R}^n is defined as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

This is called Euclidean inner product (standard inner product). Inner product vs dot product:

Algebraic properties of inner product space

If $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are vectors in a real inner product space V, and if $k \in \mathbb{R}$, then:

1.
$$\langle \mathbf{0}, \mathbf{v} \rangle = \langle \mathbf{v} + \mathbf{0} \rangle = 0$$

2. $\langle \mathbf{u}, \mathbf{v} + \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle + \langle \mathbf{u}, \mathbf{w} \rangle$
3. $\langle \mathbf{u}, \mathbf{v} - \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{v} \rangle - \langle \mathbf{u} + \mathbf{w} \rangle$
4. $\langle \mathbf{u} - \mathbf{v}, \mathbf{w} \rangle = \langle \mathbf{u}, \mathbf{w} \rangle - \langle \mathbf{v} + \mathbf{w} \rangle$
5. $k \langle \mathbf{u}, \mathbf{v} \rangle = \langle \mathbf{u} + k \mathbf{v} \rangle$

Exercise: Proof the theorem!

6 / 25 © Dewi Sintiari/CS Undiksha

Weighted inner product

If
$$w_1, w_2, \ldots, w_n \in \mathbb{R}$$
 and $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ and
 $\mathbf{v} = (v_1, v_2, \ldots, v_n)$ are vectors in \mathbb{R}^n . Then:

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \cdots + w_n u_n v_n$$

is called weighted Euclidean inner product with weights w_1, w_2, \ldots, w_n .

Example

7 / 25 © Dewi Sintiari/CS Undiksha

Exc 1: Calculation with weighted Euclidean inner product

8 / 25 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

The standard inner product on M_{nn}

Given $\mathbf{u} = U$ and $\mathbf{v} = V$, matrices in the vector space M_{nn} . The standard inner product on M_{nn} is defined as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(U^T V)$$

Example

For \mathbb{R}^2 , and matrices:

$$U = egin{bmatrix} u_1 & u_2 \ u_3 & u_4 \end{bmatrix}$$
 and $egin{bmatrix} v_1 & v_2 \ v_3 & v_4 \end{bmatrix}$

The standard inner product of U and V is:

$$\langle \mathbf{u}, \mathbf{v} \rangle = tr(U^T V) = u_1 v_1 + u_2 v_2 + u_3 v_3 + u_4 v_4$$

Exercise: Prove that the four axioms of inner product hold!

9 / 25 © Dewi Sintiari/CS Undiksha

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

The evaluation inner product on P_n

Let $\mathbf{p} = a_0 + a_1x + \cdots + a_nx^n$ and $\mathbf{q} = b_0 + b_1x + \cdots + b_nx^n$ are polynomials in P_n . x_0, x_1, \dots, x_n are distinct real numbers.

The evaluation inner product on P_n at x_0, x_1, \ldots, x_n is defined as:

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + \cdots + p(x_n)q(x_n)$$

Exercise: Prove that the four axioms of inner product hold!

10 / 25 © Dewi Sintiari/CS Undiksha

▲□▶▲□▶▲□▶▲□▶ □ のQで

Exc 2: Calculation with a weighted Euclidean inner product

11 / 25 © Dewi Sintiari/CS Undiksha

・ロト ・ 画 ・ ・ 画 ・ ・ 画 ・ 今々で

Part 2: Angle and orthogonality in inner product spaces

12 / 25 © Dewi Sintiari/CS Undiksha

イロト 不得 トイヨト イヨト 三日

Norm of vector and the algebraic properties

Let V be a real inner product space. Then: the norm of $\mathbf{v} \in V$:

$$\|\mathbf{v}\| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$

Theorem (Properties of norm)

If **u** and **v** are vectors in a real inner product space V, and if $k \in \mathbb{R}$, then:

1.
$$\|\mathbf{v}\| \ge 0$$
 where equality holds iff $\mathbf{v} = \mathbf{0}$;

2. $||k\mathbf{v}|| = |k|||\mathbf{v}||$.

Exercise: Proof the theorem!

13 / 25 © Dewi Sintiari/CS Undiksha

Distance of two vectors and the algebraic properties

Let V be a real inner product space. Then: the distance between two vectors \mathbf{u} and \mathbf{v} :

$$d(\mathbf{u},\mathbf{v}) = \|\mathbf{u}-\mathbf{v}\| = \sqrt{\langle \mathbf{u}-\mathbf{v},\mathbf{u}-\mathbf{v}
angle}$$

Question: can you relate the above definition with the definition of distance that we discussed earlier?

Theorem (Properties of distance) If \mathbf{u} and \mathbf{v} are vectors in a real inner product space V, and if $k \in \mathbb{R}$, then:

1.
$$d(\mathbf{u},\mathbf{v}) = d(\mathbf{v},\mathbf{u});$$

2. $d(\mathbf{u}, \mathbf{v}) \ge 0$ where equality holds iff $\mathbf{u} = \mathbf{v}$.

Exercise: Proof the theorem!

14 / 25 © Dewi Sintiari/CS Undiksha

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ - つくつ

Angle between two vectors in \mathbb{R}^n Recall that:

The angle between two vertices **u** and **v** in \mathbb{R}^n is defined as:

$$\theta = \cos^{-1}\left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}\right)$$

Theorem (Cauchy-Schwarz inequality)

If \mathbf{u} and \mathbf{v} are vectors in a real inner product space V, then:

 $|\langle \mathbf{u},\mathbf{v}\rangle| \leq \|\mathbf{u}\|\|\mathbf{v}\|$

Note that the theorem implies that the angle between ${\bf u}$ and ${\bf v}$ ranges between 0 and $\pi=180^o.$

$$0 \le heta \le \pi$$

Exercise: Prove the Cauchy-Schwarz inequality! $(\Box) (\Box$

15 / 25 © Dewi Sintiari/CS Undiksha

Angle between two vectors in real vector space

The Cauchy-Schwarz inequality implies:

$$-1 \leq rac{\langle \mathbf{u}, \mathbf{v}
angle}{\|\mathbf{u}\| \|\mathbf{v}\|} \leq 1$$

which means that there is a unique angle θ for which:

$$\cos(heta) = rac{\langle {f u}, {f v}
angle}{\|{f u}\| \| {f v} \|} \;\;\; ext{ and } \;\; 0 \leq heta \leq \pi$$

Hence,

$$heta = \cos^{-1}\left(rac{\langle \mathbf{u}, \mathbf{v}
angle}{\|\mathbf{u}\| \|\mathbf{v}\|}
ight)$$

16 / 25 © Dewi Sintiari/CS Undiksha

Angle of vectors in M_{22}

In the previous example, we are given two vectors in M_{22} , namely $\mathbf{u} = U$ and $\mathbf{v} = V$, where:

$$U = egin{bmatrix} u_1 & u_2 \ u_3 & u_4 \end{bmatrix}$$
 and $egin{bmatrix} v_1 & v_2 \ v_3 & v_4 \end{bmatrix}$

How to find the angle between **u** and **v**? **Solution:**

$$\boldsymbol{\theta} = \cos^{-1}\left(\frac{\mathbf{u}\cdot\mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}\right)$$

• Compute $\langle \mathbf{u}, \mathbf{v} \rangle$

$$\langle \mathbf{u}, \mathbf{v} \rangle = 1(-1) + 2(0) + 3(3) + 4(2) = -1 + 0 + 9 + 8 = 16$$

17 / 25 © Dewi Sintiari/CS Undiksha

What can you conclude about the angle of two vectors in an inner product space?

18 / 25 © Dewi Sintiari/CS Undiksha

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Triangular inequalities

Theorem (Triangular inequalities on norm and distance) If \mathbf{u} , \mathbf{v} , and \mathbf{w} are vectors in a real inner product space V, and $k \in \mathbb{R}$, then:

1. $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$ 2. $d(\mathbf{u}, \mathbf{v}) \le d(\mathbf{u}, \mathbf{w}) + d(\mathbf{w}, \mathbf{v})$

Figure: Illustration of triangular inequality

19 / 25 © Dewi Sintiari/CS Undiksha

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

Orthogonality

Definition

Two vectors **u** and **v** in an inner product space V called orthogonal if $\langle u, v \rangle = 0$.

20 / 25 © Dewi Sintiari/CS Undiksha

Example 1: Orthogonality depends on the inner product

Given two vectors $\mathbf{u} = (1,1)$ and $\mathbf{v} = (1,-1)$.

• **u** and **v** are orthogonal w.r.t. the Euclidean inner product on $\mathbb{R}^2.$

$$\mathbf{u} \cdot \mathbf{v} = (1)(1) + (1)(-1) = 0$$

but not orthogonal w.r.t. the weighted Euclidean inner product: (u, v) = 3u₁v₁ + 2u₂v₂, since:

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3(1)(1) + 2(1)(-1) = 1 \neq 0$$

21 / 25 © Dewi Sintiari/CS Undiksha

Example 2: Orthogonal vectors in M_{22}

Recall the definition of the inner product on M_{nn} :

$$\langle \mathbf{u}, \mathbf{v} \rangle = \operatorname{tr}(U^T V)$$

Are the following matrices orthogonal?

$$U = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $V = \begin{bmatrix} 0 & 2 \\ 0 & 0 \end{bmatrix}$

Solution:

$$\langle U, V \rangle = 1(0) + 0(2) + 1(0) + 1(0) = 0$$

Hence, U and V are orthogonal.

22 / 25 © Dewi Sintiari/CS Undiksha

Example 3: Orthogonal vectors in P_2

Define inner product on P_2 as follows.

For $\mathbf{p}, \mathbf{q} \in P_2$, define:

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} p(x) q(x) \ dx$$

Let $\mathbf{p} = x$ and $\mathbf{q} = x^2$. Then:

$$\|\mathbf{p}\| = \langle \mathbf{p}, \mathbf{p} \rangle^{1/2} = \left[\int_{-1}^{1} xx \, dx \right]^{1/2} = \left[\int_{-1}^{1} x^2 \, dx \right]^{1/2} = \sqrt{\frac{2}{3}}$$
$$\|\mathbf{q}\| = \langle \mathbf{q}, \mathbf{q} \rangle^{1/2} = \left[\int_{-1}^{1} x^2 x^2 \, dx \right]^{1/2} = \left[\int_{-1}^{1} x^4 \, dx \right]^{1/2} = \sqrt{\frac{2}{5}}$$
$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} xx^2 \, dx = \int_{-1}^{1} x^3 \, dx = 0$$

Hence, the vectors $\mathbf{p} = x$ and $\mathbf{q} = x^2$ are orthogonal relative to the given inner product.

23 / 25 © Dewi Sintiari/CS Undiksha

Exercise

Prove the following Generalized Theorem of Pythagoras

If \boldsymbol{u} and \boldsymbol{v} are orthogonal vectors in a real inner product space, then:

$$\|{\bf u}+{\bf v}\|^2=\|{\bf u}\|^2+\|{\bf v}\|^2$$

24 / 25 © Dewi Sintiari/CS Undiksha

to be continued...

