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Learning objectives

After this lecture, you should be able to:

1. explain the concept of inner product in general (especially, in
terms of 4 axioms of inner product);

2. explain the concept of inner product space;

3. compute the inner product of two vectors in a space;

4. compute the weighted inner product of two vectors;

5. compute the angle of two vectors in terms of inner product;

6. compute the distance of two vectors;

7. show that two vectors are orthogonal or not.

2 / 25 c© Dewi Sintiari/CS Undiksha



Part 1: Inner product & inner
product space
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Inner product

An inner product on a real vector space∗ V is a function that associates
real numbers u, v with each pair of vectors in V in such a way that the
following axioms are satisfied for all vectors u, v , and w in V and all
scalars k.

1. 〈u, v〉 = 〈v,u〉 [Symmetric axiom]

2. 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉 [Additivity axiom]

3. 〈ku, v〉 = k〈u,w〉 [Homogenity axiom]

4. 〈v, v〉 ≥ 0 and 〈v, v〉 = 0 iff v = 0 [Positivity axiom]

A real vector space with an inner product is called a real inner product

space.

∗A real vector space is a vector space whose field of scalars is the field of
reals.
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Euclidean inner product

The inner product of two vectors u and v in Rn is defined as:

〈u, v〉 = u · v = u1v1 + u2v2 + · · ·+ unvn

This is called Euclidean inner product (standard inner product).

Inner product vs dot product:

——
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Algebraic properties of inner product space

If u, v,w are vectors in a real inner product space V , and if k ∈ R, then:

1. 〈0, v〉 = 〈v + 0〉 = 0

2. 〈u, v + w〉 = 〈u, v〉+ 〈u,w〉

3. 〈u, v−w〉 = 〈u, v〉 − 〈u + w〉

4. 〈u− v,w〉 = 〈u,w〉 − 〈v + w〉

5. k〈u, v〉 = 〈u + kv〉

Exercise: Proof the theorem!
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Weighted inner product

If w1,w2, . . . ,wn ∈ R and u = (u1, u2, . . . , un) and
v = (v1, v2, . . . , vn) are vectors in Rn. Then:

〈u, v〉 = w1u1v1 + w2u2v2 + · · ·+ wnunvn

is called weighted Euclidean inner product with weights
w1,w2, . . . ,wn.

Example
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Exc 1: Calculation with weighted Euclidean inner product
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The standard inner product on Mnn

Given u = U and v = V , matrices in the vector space Mnn. The
standard inner product on Mnn is defined as:

〈u, v〉 = tr(UTV )

Example

For R2, and matrices:

U =

[
u1 u2
u3 u4

]
and

[
v1 v2
v3 v4

]
The standard inner product of U and V is:

〈u, v〉 = tr(UTV ) = u1v1 + u2v2 + u3v3 + u4v4

Exercise: Prove that the four axioms of inner product hold!
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The evaluation inner product on Pn

Let p = a0 + a1x + · · ·+ anx
n and q = b0 + b1x + · · ·+ bnx

n are
polynomials in Pn.
x0, x1, . . . , xn are distinct real numbers.

The evaluation inner product on Pn at x0, x1, . . . , xn is defined as:

〈p,q〉 = p(x0)q(x0) + p(x1)q(x1) + · · ·+ p(xn)q(xn)

Exercise: Prove that the four axioms of inner product hold!
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Exc 2: Calculation with a weighted Euclidean inner product
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Part 2: Angle and
orthogonality in inner product

spaces
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Norm of vector and the algebraic properties

Let V be a real inner product space. Then: the norm of v ∈ V :

‖v‖ =
√
〈v , v〉

Theorem (Properties of norm)
If u and v are vectors in a real inner product space V , and if k ∈ R, then:

1. ‖v‖ ≥ 0 where equality holds iff v = 0;

2. ‖kv‖ = |k|‖v‖.

Exercise: Proof the theorem!
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Distance of two vectors and the algebraic properties

Let V be a real inner product space. Then: the distance between two
vectors u and v:

d(u, v) = ‖u− v‖ =
√
〈u− v,u− v〉

Question: can you relate the above definition with the definition of
distance that we discussed earlier?

Theorem (Properties of distance)
If u and v are vectors in a real inner product space V , and if k ∈ R, then:

1. d(u, v) = d(v,u);

2. d(u, v) ≥ 0 where equality holds iff u = v.

Exercise: Proof the theorem!
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Angle between two vectors in Rn

Recall that:

The angle between two vertices u and v in Rn is defined as:

θ = cos−1

(
u · v
‖u‖‖v‖

)

Theorem (Cauchy-Schwarz inequality)
If u and v are vectors in a real inner product space V , then:

|〈u, v〉| ≤ ‖u‖‖v‖

Note that the theorem implies that the angle between u and v ranges
between 0 and π = 180o .

0 ≤ θ ≤ π

Exercise: Prove the Cauchy-Schwarz inequality!
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Angle between two vectors in real vector space

The Cauchy-Schwarz inequality implies:

−1 ≤ 〈u, v〉
‖u‖‖v‖

≤ 1

which means that there is a unique angle θ for which:

cos(θ) =
〈u, v〉
‖u‖‖v‖

and 0 ≤ θ ≤ π

Hence,

θ = cos−1

(
〈u, v〉
‖u‖‖v‖

)
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Angle of vectors in M22

In the previous example, we are given two vectors in M22, namely
u = U and v = V , where:

U =

[
u1 u2
u3 u4

]
and

[
v1 v2
v3 v4

]
How to find the angle between u and v?

Solution:

θ = cos−1

(
u · v
‖u‖‖v‖

)
• Compute 〈u, v〉

〈u, v〉 = 1(−1) + 2(0) + 3(3) + 4(2) = −1 + 0 + 9 + 8 = 16
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What can you conclude about the angle of two vectors in
an inner product space?
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Triangular inequalities

Theorem (Triangular inequalities on norm and distance)

If u, v, and w are vectors in a real inner product space V , and
k ∈ R, then:

1. ‖u + v‖ ≤ ‖u‖+ ‖v‖
2. d(u, v) ≤ d(u,w) + d(w, v)

u

wv

u + v

u

v

Figure: Illustration of triangular inequality
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Orthogonality

Definition
Two vectors u and v in an inner product space V called orthogonal
if 〈u, v〉 = 0.
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Example 1: Orthogonality depends on the inner product

Given two vectors u = (1, 1) and v = (1,−1).

• u and v are orthogonal w.r.t. the Euclidean inner product on
R2.

u · v = (1)(1) + (1)(−1) = 0

• but not orthogonal w.r.t. the weighted Euclidean inner
product: 〈u, v〉 = 3u1v1 + 2u2v2, since:

〈u, v〉 = 3(1)(1) + 2(1)(−1) = 1 6= 0
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Example 2: Orthogonal vectors in M22

Recall the definition of the inner product on Mnn :

〈u, v〉 = tr(UTV )

Are the following matrices orthogonal?

U =

[
1 0
1 1

]
and V =

[
0 2
0 0

]

Solution:

〈U,V 〉 = 1(0) + 0(2) + 1(0) + 1(0) = 0

Hence, U and V are orthogonal.
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Example 3: Orthogonal vectors in P2

Define inner product on P2 as follows.

For p,q ∈ P2, define:

〈p,q〉 =

∫ 1

−1

p(x)q(x) dx

Let p = x and q = x2. Then:

‖p‖ = 〈p,p〉1/2 =

[∫ 1

−1

xx dx

]1/2
=

[∫ 1

−1

x2 dx

]1/2
=

√
2

3

‖q‖ = 〈q,q〉1/2 =

[∫ 1

−1

x2x2 dx

]1/2
=

[∫ 1

−1

x4 dx

]1/2
=

√
2

5

〈p,q〉 =

∫ 1

−1

xx2 dx =

∫ 1

−1

x3 dx = 0

Hence, the vectors p = x and q = x2 are orthogonal

relative to the given inner product.
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Exercise

Prove the following Generalized Theorem of Pythagoras

If u and v are orthogonal vectors in a real inner product space,
then:

‖u + v‖2 = ‖u‖2 + ‖v‖2
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to be continued...
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